II. Изменение и отладка технологии производства ОКГТ с 16ю волокнами, диаметром 11,0-11,2мм. Разработка и отладка технологической карты производства на промышленной площадке ОАО «Северсталь-Метиз» в г.Волгограде (АО «Редаелли ССМ»). Экспериментальное подтверждение и проверка параметров, с проведением испытаний всех вариантов в соответствии с регламентом ПАО «ФСК ЕЭС».

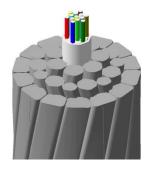
Technical problem with OPGW, model 1X36 (module +7+7/7+14)

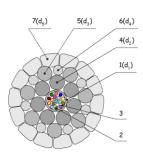
Проблема появилась при производстве ОКГТ Ø 11,0мм с модулем 2,30мм (трубка 2,30мм/1,90мм, толщина стенки 0,20мм, с 16-ю волокнами 665516).

<u>Суть проблемы</u>: Отсутствие сигнала на большинстве или всех волокнах на разных длинах, после стандартного режима производства ОКГТ при отсутствии видимых повреждений модуля. Признаков пережатия волокон нет на <u>всех</u> образцах (волокна перемещаются свободно). На <u>некоторых</u> образцах полное отсутствии видимых повреждений модуля, на других есть выделения заполняющего

гидрофобного геля. <u>Ранее производство ОКГТ Ø 11,0мм с тем же модулем</u> 2,30мм (трубка 2,30мм/1,90мм, толщина стенки 0,20мм), но с 12-ю волокнами, не только не имели проблем после производства, но и прошли несколько

- Испытание на стойкость к растяжению*
- Испытания деформации оптических волокон*


циклов комплексных испытаний, каждый из которых состоял:


- Испытание на стойкость к раздавливанию*
- Испытание на стойкость к воздействию токов молнии 110 кл*
- Испытание на стойкость к перекатке на ролике*
- Эоловая вибрация (Aeolian Vibration Test) *
- Испытания на стойкость к изгибу*
- Испытание на вытяжку (1000 часов)*
- Галопирование (Galloping Test) *
- Испытания на стойкость к внешним воздействующим факторам -40 до +70°C *
- Испытания на водонепроницаемость 100%
- Испытание на стойкость к воздействию токов КЗ*: прирост оптического затухания не превышает 0,05 дБ/км. Не произошло нарушение целостности ОВ и уменьшение минимальной прочности на разрыв (значения, кА: Ід =7,27; Інп= 5,1; Іт=4,3)

<u>Результат:</u> величина увеличения коэффициента затухания в третьем цикле и после испытаний не превышает 0,05 дБ/км, включая погрешность измерительного прибора, отсутствуют видимые повреждения конструкции кабеля *.Conformity testing requirements of Germany (DIN & IEC), confirmed by SAG Deutschland - Versuchsund Technologiezentrum.

Особенности технологии производства ОКГТ:

Модуль диаметром d1,первый повив семи проволок с диаметром d2, второй повив с чередованием семи стальных проволок с диаметром d3 и семи стальных проволок с диаметром d4 и третий повив четырнадцати стальных проволок с диаметром d5, при этом первый, второй и третий повивы выполнены с одинаковым шагом свивки, в одном направлении и с линейным касанием проволок первого, второго и третьего повивов, наружные поверхности проволок третьего повива пластически деформированы, увеличена площадь контакта между проволоками третьего повива, а также между проволоками второго и первого повивов и трос в целом уплотнен.(Patents DE & RF).

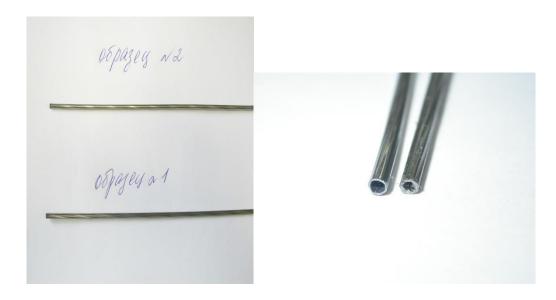
► Для достижения работоспособности ОКГТ Ø 11,0мм с модулем 2,30мм, с 16-ю волокнами нам пришлось снизить степень обжатия при пластической деформации и полностью отказаться от рихтовки, уплотняющей изделие в целом.

Однако остался вопрос почему ОКГТ Ø11,0мм с модулем с 12-ю волокнами работает, а с 16-ю – нет?

- № По существу рефлектограммам ОВ №005 ОВ №009 в таблице событий указан положительный дефект с отрицательными значениями потерь -0.041dВ и -0,036 dВ соответственно. Такие значения получают в случае сварки оптического кабеля разного производителя (с разными коэффициентами рассеивания), что в данном случае невозможно или при не правильной установки маркеров измерения (второй маркер находящийся непосредственно перед событием находится на всплеске рефлетограммы), что возможно при автоматическом анализе рефлектограммы основанном только на показаниях программного обеспечения для рефлектометра без участия в анализе специалиста. Аналогично для ОВ №№ 6,15,16
- Указанные значения затухания на ОВ №015 события на расстоянии 3206 метров в 0,034 dВ не могут считаться браком так как итоговое среднее значение затухания на километр по всему барабану примерно равно значению, указанному в паспорте к оптическому кабелю, а значит столь малое затухание не может влиять на уровень оптического сигнала. Аналогично для ОВ №009.
- ▶ В соответствии с требованиями Национального стандарта Российской Федерации ГОСТ Р 52266-2004, который включен в раздел 2. Нормативные ссылки, Стандарт организации ОАО «ФСК ЕЭС» СТО 56947007-33180.174-2014, Таблица А1.
- ▶ Коэффициент затухания для модуля G 655 должен быть не менее 0,30 дб/км. Отмечаемый коэффициент затухания равный 0,21дб/км, указанный в Примечаниях к таблице 3, ТУ 113 – 2014 относится к приведенному в примечаниях модулю типа G 652.
- ➤ Стандарт организации ОАО «ФСК ЕЭС» СТО 56947007-33180.174-2014 не предусматривает такой параметр как неоднородное локальное затухание, характеризующее ОКГТ, поэтому вывод о не пригодности к монтажу по результатам неоднородного локального затухания не правомочен.
- ▶ Согласно ГОСТ Р 52266-2004 в нём указана рекомендация на кабель Рекомендация МСЭ-Т G.655: 2006 (Международный союз электросвязи) характеристик одномодовых волоконно-оптических кабелей со смещенной ненулевой дисперсией, в таблице Т4/G.655 Атрибуты G.655.D (это как раз используемый кабель) указаны таблицы рекомендуемых значений по оптическому кабелю. Согласно нему все волокна у которых максимальное значение коэффициента затухания при 1550 нм составляет 0,35 дБ/км можно охарактеризовать как рабочие.

▶ В соответствии с международным стандартом ITU-T G.655.D максимальный коэффициент затухания в оптическом волокне на длине волны 1550нм 0.35 dB/km. (Страницы 14-15 в прикрепленном файле). Т.е. для кабеля длинной 4 км максимальное допустимое затухание составляет 1.4 dB на всей длине кабеля.

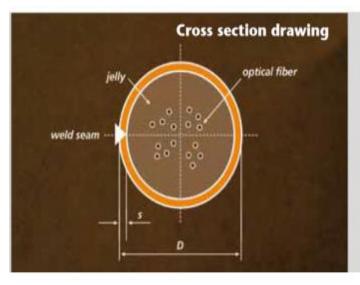
Образец №1-трубка после деформации, с обжатием по площади поперечного сечения троса 7,55%. Образец №2-трубка после деформации 4,16% без рихтующих устройств.

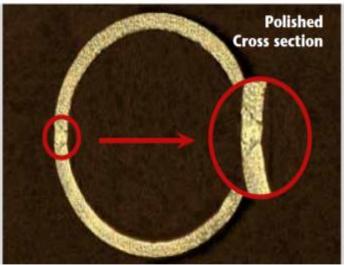

Микротвердость образцов трубки модуля:

Образец 1 диаметр 2,30 мм не деформированный -3400 МПа,

Образец 2 диаметр 2,30 мм из Γ Т - 4800 М Π а, новый диаметр 2,30 мм после обжатия в 1-й паре роликов - 5300 М Π а.

Образец 3 диаметр 3,0 мм из ОКГТ 3,8 Гпа, из ОКГТ конструкции (т+9+9) 3800 МПа (3,8 ГПа) после деформации.


Трубки немагнитные, так что в обоих случаях аустенитная сталь, но образец 1 наклепывается значительно сильнее.



Исходные характеристики используемого для ОКГТ Ø11мм с 16ю оптическими волокнами по СТО 71915393-ТУ 113-2014, для объекта "Расширение трубопроводной системы "Восточная Сибирь - Тихий океан". одномодового оптического волокна Fujikura FutureGuide® с ненулевой смещенной дисперсией (рекомендация ITU-T G.655):

Параметр	Единицы	FutureGuide®- LA	FutureGuide®- SS
	измерения		
Диаметр модового поля на длине волны	μм	9.6 ± 0.4	8.4 ± 0.6
1550нм			
Эффективная область (Aeff)	MM ²	72	55
Затухание на длине волны 1550нм	dВ/км	≤0.22	≤0.22
Затухание на длине волны 1625нм	dB/км	≤0.25	≤0.25
Длина волны отсечки	НМ	≤1450	≤1450
Хроматическая дисперсия (1530-1565нм)	пс/(нм × км)	2.0 - 6.0	2.6 – 6.0
Хроматическая дисперсия (1565-1625нм)	пс/(нм × км)	4.5 – 11.2	4.0 – 8.9
Наклон нулевой дисперсии	$\pi c/(Hm^2 \times Km)$	≤0.092	≤0.05
Поляризационная модовая дисперсия	пс/км ^{0,5}	≤0.1	≤0.1
Уровень прочности (proof level)	%	≥1.0	≥1.0

Используемый модуль

●●● TESTING, QUALITY CONTROL

Testing	Scope	Remarks
Measurements (length, Ø)	100%	In conformity with DIN 48200 section 8
ODTR testing of fiber	100%	DIN EN 188000 -303
Impermeability to water	100%	In conformity with DIN 0472 section 811
Weld penetration	100%	Internal test plan
Flawlessness/weld seam	100% online	Internal test plan
Fiber Excess Length	10% of lengt	hs supplied Internal test plan

The production carries ISO 9001:2008 certification. The manufactured tube is subject to quality control as defined in a test plan. All test data are archived and can be retrieved.

FIBER COLOURS

Colour		OR	ER 50	DR 50	ER 25	DR 25
red	rd		•	•	•	
green	gn	•	•	•	•	•
blue	bl		•		•	•
yellow	ye		•		•	•
natural	na	•	•		•	•
grey	gr	•	•	•	•	•
brown	br			•	•	•
violet	vi	•		•	•	•
turquoise	tk	•	•	•	•	
black	bk	•				
white	wh	•	•	•	•	
orange	Of	•	•	•	•	
pink	pi	•	•	•	•	
OR	with	out rinc	markin	q		
ER 50		e ring		-	k 50mm	ring distance
DR 50	ELUNY SEE	CARRIED STATE		TO ALL TALL PARTY		ring distance
ER 25		e ring				ring distance
DR 50	100	A 1 () () () ()		White the state of the state of the		ring distance
Additionally		and the second		The second second		TO COLUMN THE RESERVE TO SERVE THE RESERVE

• • • TECHNICAL DATA

Diameter	Wall thickness	Ø Tolerance	Max. No. of fibers
D [mm]	s [mm]	[mm]	[pieces]
1,1-1,4	0,125 ±0,005	±0,04	2
1,5 - 1,8	0,150 ±0,005	±0,04	4
1,7 = 2,1	0,200 ±0,005	±0,04	8
2,2-2,5	0,200 ±0,005	±0,04	30
2,6 - 2,8	0,200 ±0,005	±0,045	30
2,9 - 3,4	0,200 ±0,005	±0,045	38
3,5 - 4,3	0,200 ±0,005	±0,05	48
3,5 - 4,3	0,250 ±0,005	±0,05	48
4,2-5,2	0,300 ±0,005	±0,05	72
5.0 - 6.3	0.300 +0.005	+0.05	96

The maximum number of fibers here stated is dependent on the feeding system of the plant. The filling ratio of the tube is not taken into account. On Request multi-layer tubes are available (steel over steel or aluminium over steel)

AVAILABILITY OF DIAMETER

1,10 - 1,20 - 1,30 - 1,40 - 1,45 - 1,50 - 1,60 - 1,70 - 1,80 - 1,90 - 1,95 2,00 - 2,20 - 2,30 - 2,35 - 2,40 - 2,45 - 2,50 - 2,55 - 2,60 - 2,65 - 2,70 2,80 - 2,90 - 2,95 - 3,00 - 3,10 - 3,20 - 3,30 - 3,40 - 3,45 - 3,50 - 3,55

Other diameter on request.

STEEL

Regulation Type

DIN 17441 1.4301 or 1.4303 or 1,4306 304 or 305 or 304L

Other material on request. (for example 1.4404 - 316L and Alloy 825)

FILLING COMPOUND

Standard filling compound is the LA444, Uniqel 400N or the Sepigel H200LWT (with hydrogen scavenger). Other jelly types are available on re-

OPTICAL FIBER

Following fiber type will be used as standard: G651 50/125 or 62,5/125

G652D

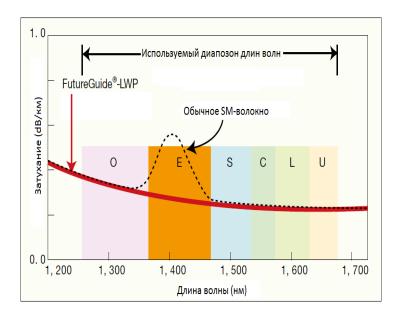
Typical attenuation value of the G625D fibers used

1310 nm 0,34 dB/km

1550 nm 0,20 dB/km

Other fiber types and manufacturers available on request!

Характеристики оптических волокон


По мере расширения областей применения оптических волокон в различных участках телекоммуникационной сферы, совершенствовались сами волокна, обретая новые параметры, оптимизированные для разных задач. В настоящее время применяется несколько типов оптических волокон, характеристики которых регламентированы рекомендациями Международного Союза Электросвязи.

Класс (тип) оптических волокон	Рекомендация ITU-T
Многомодовое 50/125 мкм с градиентным	G.651
профилем показателя преломления	
Стандартное одномодовое	G.652
Одномодовое со смещенной дисперсией	G.653
Одномодовое со смещенной длиной волны отсечки	G.654
Одномодовое с ненулевой смещенной дисперсией	G.655
Одномодовое с ненулевой дисперсией для широкополосной оптической передачи	G.656
Одномодовое с уменьшенными потерями на изгибах с малыми радиусами	G.657

ITU-T - (International Telecommunication Union - Telecommunication Standardization Sector) - Сектор стандартизации Международного союза электросвязи.

Каждый класс (тип) оптических волокон может иметь различные подклассы (категории), в которых волокна могут отличаться по некоторым характеристикам.

Основной тип одномодового оптического волокна, применяемого в кабелях SNR — это стандартное волокно Fujikura FutureGuide®-LWP, соответствующее требованиям ITU-T G.652.D. Это оптическое волокно обладает низкими потерями в области гидроксильного пика (1383 нм), что позволяет более широко использовать CWDM технологии при передаче.

Характеристики одномодового оптического волокна Fujikura FutureGuide®-LWP:

Параметр	Единицы измерения	Fujikura FutureGuide®-LWP
Диаметр модового поля на длине волны 1310нм	μм	9.2 ± 0.4
Затухание на длине волны 1310нм	dВ/км	≤0.35
Затухание на длине волны 1383нм	dВ/км	≤0.31
Затухание на длине волны 1550нм	dB/км	≤0.21
Затухание на длине волны 1625нм	dВ/км	≤0.23
Потери на изгибах (Ø60мм, 100 витков,	dB	≤0.1
длина волны 1625нм)		
Хроматическая дисперсия (1285-1330нм)	пс/(нм × км)	≤3.5
Хроматическая дисперсия (1550нм)	пс/(нм × км)	≤18
Наклон нулевой дисперсии	пс/(нм ² × км)	≤0.092
Длина волны нулевой дисперсии	НМ	1300-1324
Длина волны отсечки	НМ	≤1260
Поляризационная модовая дисперсия	пс/км ^{0,5}	≤0.2
Диаметр модового поля на длине волны 1310нм	μм	9.2 ± 0.4
Испытание на прочность (proof test level)	%	≥1.0
Допустимый радиус изгиба	MM	≥30

По требованию заказчика, оптический кабель SNR также производится с другим типом оптических волокон: по ITU-T G.655.

Общие характеристики оптического волокна

ПАРАМЕТРЫ И ТИПЫ ОДНОМОДОВЫХ ОПТИЧЕСКИХ ВОЛОКОН

Геометрические и передаточные параметры ОВ		ITU-T G.652.D+G.657.A1 (E3) ACE	ITU-T G.653	ITU-T G.654	ITU-T G.655 (E5)	ITU-T G.657.A1	ITU-T G.657.A2	ITU-T G.652.D
Рабочая длина волны, нм		1310, 1383, 1550, 1625	1550	1550	1550	1310, 1383, 1550, 1625	1310, 1383, 1550, 1625	1310, 1383, 1550
	1310	0,32	-	0,35	0,35	0,35	0,35	0,35
Коэффициент затухания на опорной длине волны, дБ/км, не более	1383	0,31	-	0,35	0,35	0,35	0,35	0,31
	1550 нм	0,18	0,35	0,22	0,22	0,22	0,22	0,21
	1625 нм	0,2	-	0,24	0,24	0,24	0,24	-
Диаметр модового поля, мкм	1310	9,2±0,4	7,8±0,8	8,6±0,4	-	8,6±0,4	8,6±0,4	9,2±0,4
	1550 нм	10,4±0,5	8,5±0,8	10,5±0,7	9,6±0,4	-	-	10,4 ± 0,8
Диаметр оболочки, мкм		125,0±0,7			125,0±1,0			125,0±1,0

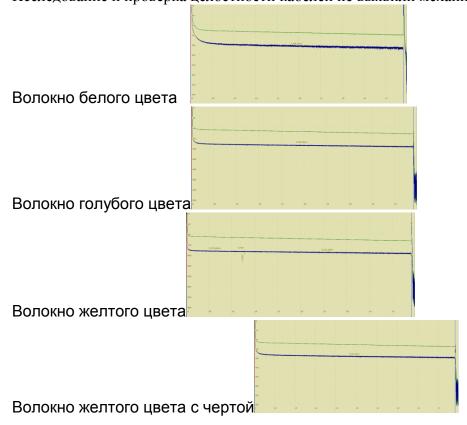
Погрешность концентричности сердцевины и оболочки, мкм		0,5	0,8	0,6	0,6	0,5	0,5	0,5
Диаметр покрытия, мкм		240±5			245±10			240±10
Длина волны отсечки, нм		1260	1270	1530	1480	1260	1260	1260
Длина волны нулевой дисперси	1и, нм	1300-1324						1302-1324
Наклон при нулевой дисперсии пс/(нм²* км)	,	0,092	0,085	-	-	0,092	0,092	0,092
	1310 нм	≤3,5			-			≤3.5
дисперсии, пс/(нм ² * км)	1550 нм	≤18			2,0-6,0			≤18
Коэффициент поляризационно модовой дисперсии, пс/vкм	й	0,04	0,2	0,02	0,10	0,2	0,2	0,8

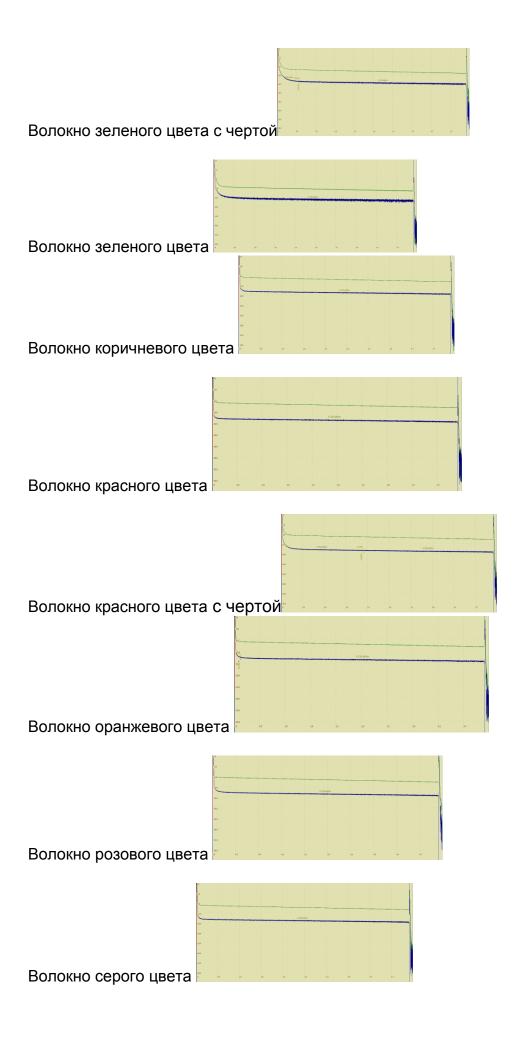
ПАРАМЕТРЫ И ТИПЫ МНОГОМОДОВЫХ ОПТИЧЕСКИХ ВОЛОКОН

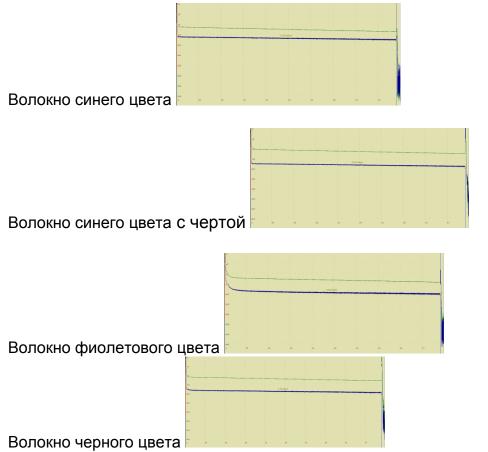
Геометрические и передаточные параметры ОВ	IEC60793-2-10 (OM1)(M2)	ITU-T G.651.1 (OM2)(M1)	ITU-T G.651.1 (OM3)	ITU-T G.651.1 (OM4)	
Рабочая длина волны, нм		850/1300	850-1300	850-1300	850-1300
Коэффициент затухания на опорной длине волны,	850 нм	3,0	-	-	-
дБ/км, не более	1300 нм	0,7	0,7	0,7	0,7
Диаметр сердцевины, мкм		62,5±3,0	50,0±3,0	50,0±3,0	50,0±3,0
Диаметр оболочки, мкм		125,0±2,0	125,0±2,0	125,0±2,0	125,0±2,0
Погрешность концентричности сердцевины и оболочки, мкм		3,0	3,0	3,0	3,0
Диаметр покрытия, мкм		245±10	245±10	245±10	245±10
Полоса пропускания 850 нм/1300нм, МГц.км		200/600	400/1000	400/2000	400/2500
Числовая апертура		0,275 ± 0,015	0,200 ± 0,015	0,200 ± 0,015	0,200 ± 0,015

	3,500 = 3,500 = 3,500 = 3,500 = 3,500 = 3,500
Типы оптических волокон в условных обозначениях оптического кабеля	Общая характеристика оптических волокон
E1 / G.652.B	Одномодовое оптическое волокно с несмещенной дисперсией по рекомендации ITU-T G.652.В
E2 / G.654	Одномодовое оптическое волокно с минимизированными потерями по рекомендации ITU-T G.654
E3 / G.652.D+G.657.A1 (Ace)	Одномодовое оптическое волокно с низким пиком воды, оптимизированное на длине волны 1310, 1550, 1625 и 1383 нм по рекомендации ITU-T G.652.D с уменьшенным радиусом изгиба (Future-Guide-SR15E) по рекомендации ITU-T G.657.A1
E4 / G.653	Одномодовое оптическое волокно со смещенной дисперсией по рекомендации ITU-T G.653
E5	Одномодовое оптическое волокно с ненулевой смещенной дисперсией, оптимизированное на длине волны 1550 и 1625 нм ITU-T G.655
G.657.A1	Одномодовое оптическое волокно с уменьшенным радиусом изгиба (FutureGuide-SR15E) по рекомендации ITU-T G.657.А1 имеет дополнительные требования в части потерь на изгибе радиусом 15 мм

G.657.A2	Одномодовое оптическое волокно с уменьшенным радиусом изгиба (FutureGuide-BIS-B) по рекомендации ITU-T G.657.A2. имеет дополнительные требования в части потерь на изгибе радиусом 7,5 мм
G.657.B3	Одномодовое оптическое волокно с уменьшенным радиусом изгиба по рекомендации ITU-T G.657.ВЗ имеет дополнительные требования в части потерь на изгибе радиусом 5 мм
M1 / OM2	Многомодовое оптическое волокно 50/125 с коэффициентом широкополосности на длине волны 1300нм 1000 МГц•км по рекомендации ITU-T G.651.1
M2 / OM1	Многомодовое оптическое волокно 62,5/125 с коэффициентом широкополосности на длине волны 1300нм 600 МГц•км
OM3	Многомодовое оптическое волокно 50/125 с коэффициентом широкополосности на длине волны 1300нм 2000 МГц•км по рекомендации ITU-T G.651.1
OM4	многомодовое оптическое волокно 50/125 с коэффициентом широкополосности на длине волны 1300нм 2500 МГц•км по рекомендации ITU-T G.651.1


Итоговые выводы:


Для обеспечения минимизации брака необходима следующая коррекция технологии:


- скорость свивки не более 1 000м/час
- шаг свивки в соответствии с НД равен для d-11мм **93мм** (По ГОСТ 3241-91 не более -99мм). Кратность свивки в соответствии с НД для d-11мм **8,46** (По ГОСТ **3241-91** допустимо не более 9).
- процент обжатия 4,16% без рихтующих устройств
- дополнительные требования к модулю с оптическим волокном повышение длинны волокна внутри модуля не менее +0,65%.

Для полного исключения брака необходима замена используемого сталеканатного оборудования на кабельную машину клетьевого типа 36*500 или прядевьющую машину сигарного типа 1+12x630.

Исследование и проверка целостности кабелей не выявили механические повреждения волокон.

Дополнительные рефлектограммы по всем проведённым испытаниям с положительными и отрицательными результатами испытаний прилагаются.